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Abstract— This paper presents a novel formulation for a
workforce routing, task assignment, and scheduling problem
with privacy by design , drawing inspiration from multi-vehicle
routing problems. We examine a real case study involving
a large number of technicians tasked with refurbishing and
repairing a large number of photo booth machines spread
across a wide geographic area, spanning a country. We then
introduce a novel heuristic distributed online optimization
algorithm, based on gossiping, to: i) assign daily refurbishing
and repair tasks to technicians; ii) plan optimal routes for each
technician to execute the assigned tasks; iii) dynamically update
task assignments and routes in real-time to accommodate delays
and unforeseen impediments encountered by technicians (such
as traffic jams). The objective is to maximize enterprise profit
by effectively managing the workforce. The proposed method
inherently safeguards the privacy of real-time geolocation data
for the entire workforce, ensuring it remains undisclosed and
inaccessible to the company’s ICT infrastructure. We provide a
numerical simulation utilizing real data, supplied by DEDEM
S.p.A., demonstrating the performance of the proposed heuristic
in terms of expected net profit for the company.

I. INTRODUCTION

In this paper we consider one of the most complex
scenarios of large-scale workforce management which can in
part be modeled as a dynamic heterogeneous multi-vehicle
routing problem (dynamic HMVRP).

The popular vehicle routing problem (VRP) [1], [2] is
an extension of the famous Travelling Salesman Problem
(TSP) [3] where a salesman (or vehicle) need to visit in
minimum time or distance a set of locations or cities and go
back to the starting point. In its general formulation the TSP
is NP-hard, and several heuristic approaches with guarantees
on the worst-case performance have been proposed [4]–[6].
In the VRP usually additional constraints are considered with
respect to the TSP problem, such as capacity constraints
for the vehicle, time windows of availability, etc. The VRP
has received significant attention in the past decades and
very efficient formulations and heuristic approaches exist to
address its basic formulations: the study by Eksioglu, Vural,
and Reisman [7] revealed more than 1 thousand journal
articles with VRP as the main topic, published between 1959
and 2008, with an increasing rate of 6% every year.
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Fig. 1: A photo booth operated by DEDEM S.p.A.

In the MVRP the VRP is complicated by the existence of
more than one vehicle which needs to be routed across the set
of locations. This problem is generally more difficult to solve
because not only the computation of each route is an NP-hard
problem but also because the different sets of locations need
to be assigned to different vehicles. Usually, in the MVRP
identical vehicles are considered to simplify the problem and
reduce the number of variables and constraints. Several vari-
ations on these problems have appeared recently such as [8],
[9] for the pick and delivery in multi-robot systems, shared
locations with collision-avoidance [10]–[13], or applications
of multi-robot systems in precision agriculture [14]–[16]
which employ ad hoc Mixed-Integer Linear Programming
(MILP) formulations for fair workload distribution among
robots and general optimization of the system behavior.

In the heterogeneous MVRP (HMVRP) each vehicle is
characterized by different parameters such as motion speed,
capacity etc., thus resulting in its most complex formulation
which can be addressed for large problem instances only
by heuristics [17], [18]. A way to address this issue is
by employing the so-called gossip-based approaches where
each vehicle or robot in the network updates its own task
assignment and routing with a better one by exchanging tasks
iteratively with one other vehicle at a time, i.e., gossiping.
Gossiping has been successfully used to solve distributed
load balancing [19]–[21] and task assignment problems [22]
in large networks, and the HRMVRP also with performance
guarantees and constant factor approximations of the objec-
tive value of the solution with respect to the optimal objective
value exploiting the gossip-based interaction framework [18].
Additionally, when tasks and vehicles can enter and leave
dynamically as real-time advances, the problem is called
dynamic. Indeed, the optimal solution is now time-varying
because every time there is a change in the set of tasks or set
of vehicles, the problem changes and so does its solution.



In this work, we examine a real case study provided by
the company DEDEM S.p.A, which requires managing a
large workforce of technicians responsible for refurbishing
and repairing numerous photo booths (see Fig. 1) across
the entire Italian territory. The core of the problem involves
a dynamic HMVRP. However, the various extensions and
modifications necessary to practically address their work-
force management issues make the scenario particularly
challenging from a computational perspective. Considering
its current workforce of approximately 1 thousand tech-
nicians, each tasked with 10 ÷ 20 daily assignments dis-
tributed geographically, there are up to 20 thousand daily
tasks to be addressed. Consequently, this necessitates the
development of ad-hoc and novel heuristics. In particular,
in our complex scenario, we consider multiple technicians
departing from different depots and encountering tasks at
each visited position, each with a specified duration and an
hourly profit upon completion. Thus, the round trips to be
found must maximize the net profit, factoring in both travel
expenses and the revenue generated from task completion.
Tasks are naturally prioritized based on their proximity to the
technician’s depot and their potential profitability. To address
the company’s requirements, we additionally incorporate the
following features, further intensifying the complexity of
the problem: (i) not all tasks are mandatory; instead, tasks
should only be undertaken if they contribute to the net profit;
(ii) tasks require specific skills for execution, which should
be possessed by the assigned technician; (iii) tasks must be
executed within specific time windows and also within the
working hours of the technician that performs it, accounting
for the time needed to return to their depot.

The above-described problem is threefold: 1) an assign-
ment problem, because tasks must be assigned to the tech-
nicians; 2) a routing problem, because it must be provided
the optimal route to visit the positions where the tasks must
be performed; 3) a scheduling problem, because the time of
the day in which tasks are executed changes the profit.

Lastly, we extend the problem horizon beyond a single
day. This entails that, for a given task assignment, multiple
routes along with their scheduling must be devised for each
technician, spanning across multiple days. Summarizing, the
main contributions are:

• A MILP formulation of the complex optimization sce-
nario of the DEDEM S.p.A. case study, with a dynamic
HMVRP at its core, extended to include all the practical
details of the actual scenario.

• A real-time heuristic algorithm developed ad hoc for the
case study characterized by randomization, scalability,
and ability to dynamically reassign tasks and routes
depending on delays on task execution. The heuristic
is distributed and by design it does no exploit the real-
time position of the technicians, thus preserving their
privacy in the workplace.

• Numerical tests to validate the approach by using real
data drawn from DEDEM S.p.A.’s data. It is shown how
the proposed heuristic allows to improve the profit for
the company up to 15% while dealing with undesired

events such as delays and unexpected unavailability of
the technicians.

Structure of the paper: Section II formalizes the problem
at hand as a Mixed-Integer Linear programming, while
Section III presents the proposed heuritic approach. Section
IV provides an in-depth discussion of numerical simulations
performed in a realistic scenario constructed from real data
retrieved by DEDEM S.p.A., then Section V gives some
concluding remarks.

II. A MIXED-INTEGER LINEAR PROGRAMMING
FORMULATION

Let s ∈ N be the number of technicians, p ∈ N be
the number of positions to be visited by the technicians,
each of which corresponds to a task to be executed, and
d ∈ N be the number of days available for executing the
tasks. Accordingly, we denote by S = {1, . . . , s} the set
of technicians’ starting positions which we call depots (we
overload the notation i ∈ S to also denote the technicial itself
starting from the depot i ∈ S) , by P = {ds+1, . . . , ds+p}
the set of tasks’ positions, and by Dℓ = {ℓs+1, . . . , (ℓ+1)s}
the set of intra-day depots’ position, one for each extra day
ℓ = 1, . . . , d− 1, which are needed to model the return of
the technicians to their depots at the end of each working
day: in other words, the ℓ-th night of the i-th technician is
ℓs+i ∈ Dℓ. Note that for a single day d = 1 it holds Dℓ = ∅.
Such a description of the sets facilitates a clear mathematical
representation of the potential routes that the technicians
may travel, as detailed next. Construct an undirected graph
G = (V,E) describing the viable paths (i, j) ∈ E for each
pair of locations i, j ∈ V :

V = S ∪D ∪ P, where D =

d−1⋃
ℓ=1

Dℓ,

E :


(i, j), (j, i) ∈ E i, j ∈ P,

(i, j), (j, i) ∈ E i ∈ S ∪D, j ∈ P,

((ℓ− 1)s+ i, ℓs+ i) ∈ E i ∈ S, ℓ = 1, . . . , d− 1,

(i, j) /∈ E otherwise,
(1)

where the first set of edges represent the paths between
any pair of tasks, the second set of edges represent the
paths between any technician’s depot and any location, and
the third set of edges represent the (fake) paths of each
technician from one night to the next night. Associated with
each technician i ∈ S are

• a starting time T s
i ∈ [0, 24] (hour) and an ending time

T e
i ∈ [0, 24] (hour) describing the time window [T s

i , T
e
i ]

within which the technicians can work;
• a fixed cost qi > 0 (eur) that represents the cost of the

technician for one day.
Associated with each position i ∈ P are:

• a starting time T s
i ∈ [0, 24] (hour) and an ending time

T e
i ∈ [0, 24] (hour) describing the time window [T s

i , T
e
i ]

within which the task in that position can be executed;
• a duration δi > 0 (hour) denoting the amount of time

needed to execute the task in that position;



• an hourly profit gi > 0 (eur/hour).
Associated with each intra-day depot i ∈ Dℓ are:

• a technician i− ℓs ∈ S;
• a time-window [T s

i , T
e
i ] = [T e

i−ℓs+24(ℓ−1), T s
i−ℓs+24ℓ]

(hour) within which the technician must go back;
• a duration δi = 24− T e

i−ℓs + T s
i−ℓs (min) denoting the

amount of resting time.
Associated with each viable path (i, j) ∈ E are:

• a distance dij ≥ 0 (km) between locations i, j ∈ V ;
• a travel time tij ≥ 0 (hour) between positions i, j ∈ V ;
• a fuel cost fij ≥ 0 (eur/km) for the path from i ∈ V to
j ∈ V , which takes into account the average speed on
that path.

A wide variety of formulations exist for the standard
TSP [23]. In the following, we adapt the multi-commodity
flow formulation of Claus [24] – which we are going to call
CMFC in the reminder of the manuscript – for the standard
TSP to work with the more complex scenario considered
in this paper, which consists of the following additional
challenges:

• Multiple technicians starting from different depots;
• Time windows for both technicians and tasks;
• Hourly profit generated by the tasks’ execution;
• Tasks may remain unassigned;
• Multi-day scheduling.

Due to this more complex scenario, both the objective
functions and the constraints derived in this section constitute
an original contribution of this manuscript.

Our choice to use the CMCF formulation as a base start
for the development of the problem formulation in our
scenario stems from the fact that it is equivalent (in terms of
tightness of the LP relaxations) to the seminal formulation
provided by Dantzig et. al [25], as shown in [23, Figure
2], it enjoys a polynomial number of constraints instead of
an exponential number ([23, Table 1]), and it has a more
convenient interpretation of the variables. To get the idea
behind the CMCF formulation, one should imagine that when
the technician passes through a position k ∈ P , a commodity
is collected (think about a receipt) and it must be brought
back to the depot. Thus, we have two kinds of variables:

• Boolean variables Xi,j ∈ {0, 1} denoting the motion of
any technician from location i ∈ V to location j ∈ V ,
such that (i, j) ∈ E.

• Continuous1 variables Fi,j,k ∈ [0, 1] denoting the mo-
tion of the commodity k ∈ P ∪D from position i ∈ V
to location j ∈ P ∪D, such that (i, j) ∈ E.

Differently from the standard Claus formulation, we intro-
duce additional continuous variables Ui,j to account for time
windows and hourly profit generated by tasks’ execution:

• Continuous variables Ui,j ≥ 0 denoting the time at
which the motion of any technician from location i ∈ V
to location j ∈ V occurs, such that (i, j) ∈ E.

1Even though these variables will only take boolean values due to the
subsequent set of constraints, declaring them continuous highly speed up
the execution of the solver.

The cost function to be minimized consists of three terms:
1) The cost associated with the fuel consumed by the
technicians during the scheduled trip:

FUEL(X) =
∑

(i,j)∈E

fijdijXi,j .

2) The cost associated with the technicians’ activities:

TECH(F ) =
∑
i∈S

qi
∑
j∈P

Fi,j,i +

d−1∑
ℓ∈1

∑
i∈Dℓ

qi−ℓs

∑
j∈P

Fi,j,i,

where the first term is the cost associated with the first day,
and the second term is the cost associated with subsequent
days.

3) The profit associated with the tasks’ execution:

TASKS(X,U) =
∑
j∈P

gj
∑
i∈V

[(24 · d− tij − δj)Xi,j − Ui,j ] .

Thus, the cost function to be minimized is given by:

f(X,F,U) = FUEL(X) + TECH(F )− TASKS(X,U). (2)

We now introduce all the constraints that are needed to
solve the problem under study.
Constraint 1: Each intra-day depot k ∈ D must be visited:∑

j∈V

Xj,k = 1, ∀k ∈ D.

Constraint 2: Each position i ∈ V is left at most once:∑
j∈V

Xi,j ≤ 1, ∀i ∈ V.

Constraint 3: Each position i ∈ V is entered if it is left:∑
j∈V

(Xi,j −Xj,i) = 0, ∀i ∈ V.

Constraint 4: Each commodity k ∈ P ∪ D can flow along
the edge (i, j) ∈ E only if the edge belongs to a tour:

0 ≤ Fi,j,k ≤ Xi,j , ∀j ∈ V, ∀i, k ∈ P ∪D, : i ̸= j.

Constraint 5: Each commodity k ∈ P ∪ D must leave its
position if it belongs to some route:∑

j∈V

(Fk,j,k −Xk,j) = 0, ∀k ∈ P ∪D.

Constraint 6: Each commodity k ∈ P ∪D must return to a
depot if it belongs to some route:∑

j∈P∪D

∑
i∈S

Fj,i,k ≥
∑
j∈V

Xj,k, ∀k ∈ P ∪D.

Constraint 7: Each commodity k ∈ P ∪ D that enters a
location i ∈ P ∪D (not a final depot) must also leave it:∑

j∈P∪D

Fj,i,k =
∑
j∈V

Fi,j,k, ∀i, k ∈ P ∪D.

Constraint 8: For each technician i ∈ S going to position
k ∈ P ∪D, commodity k must return to its depot:

Xi,k ≤
∑

j∈P∪D

Fj,i,k, ∀i ∈ S, ∀k ∈ P ∪D.



Constraint 9: Each technician i ∈ S must leave its depot
within its time window:

T s
i Xi,k≤Ui,k≤(T e

i +24(d−1))Xi,k, ∀i∈S, ∀k∈P ∪D.

Constraint 10: Each technician must return to its depot i ∈ S
within its time window:

T s
i Xi,k≤Uk,i≤(T e

i +24(d−1)−tk,i)Xi,k, ∀i∈S,∀k∈P∪D.

Constraint 11: Each task’s position k ∈ P must be visited
within its time-window:

(T s
k − ti,k)Xi,k+24

∑
ℓ∈D

Fi,k,ℓ≤Ui,k, ∀i∈V, ∀k∈P,

(T e
k − ti,k−δk)Xi,k+24

∑
ℓ∈D

Fi,k,ℓ≥Ui,k, ∀i∈V, ∀k∈P.

Constraint 12: Each intra-day depot k ∈ D must be executed
within its time-window:

(T s
k − ti,k)Xi,k ≤ Ui,k, ∀i ∈ V, ∀k ∈ D.

(T e
k − ti,k − δk)Xi,k ≥ Ui,k, ∀i ∈ V, ∀k ∈ D.

Constraint 13: Each position k ∈ P ∪D must be executed
after the previous position i ∈ P ∪D has been reached and
the task has been completed:∑
j∈V

Uk,j ≥
∑
j∈V

(Uj,k + (tj,k + δk)Xj,k) , k ∈ P ∪D.

Constraint 14: Task in position k ∈ P cannot be executed
by technician j ∈ S:∑

i∈P∪D

Fi,j,k = 0, ∀j ∈ S, ∀k ∈ P.

Constraint 15: Technician j ∈ S is not available on day ℓ:

Xp,q=1, where

{
p =(ℓ−1)s+ i,

q =(ℓ%d)s+ i,
and ℓ=1, . . . ,d,

where a% b returns the reminder after the division a/b.
Thus, the optimization problem reads as:

argmin
X,F,U

f(X,F,U)

s.t. Constraints 1-15
(3)

III. A GOSSIP-BASED HEURISTIC ALGORITHM

In this section, we describe a heuristic sub-optimal ap-
proach to solve the problem detailed in Section II when the
complete problem becomes too large to be solved optimally.
The proposed approach can be used both offline, to compute
an initial solution to the problem, and online, to continue
improving the initial solution while taking into account the
following realistic occurrences:

• Delays due to traffic jams or unexpected complications
during the execution of the tasks or sudden unavailabil-
ity of some technicians: in this case, the algorithm is
able to re-arrange the schedules of the technicians in
order to minimize the loss;

• Availability of new technicians or new tasks: in this
case, the algorithm is able to compute new solutions in
real time in order to increase the profit.

Fig. 2: Graphical comparison between the Delaunay graph
(left) and the complete graph (right) of a given set of points.

The proposed approach, detailed in Algorithm 1, is based
on gossiping, a distributed computing technique used to dis-
seminate information efficiently across a network of nodes.
In this scenario, we let the nodes represent the technicians
and let the edges between nodes represent possible pairs of
technicians for which a local optimal solution can be seek.
Algorithm 1 implements an edge-based gossiping technique
by picking at random one of these edges (i.e., selecting a
pair of technicians) and computing a local optimal solution
by considering the tasks already assigned to them, if any,
together with some unassigned tasks. Once the optimal
solution is found, it moves to another pair of technicians,
until it is not possible anymore to improve any of the
schedule for each pair of technicians. In so doing, one can be
sure that when Algorithm 1 ends, it is not possible anymore
to take a pair of technicians and improve their schedules.
This approach is quite efficient for mainly two reasons: 1)
each local optimization problem is much easier to solve
if compared to the global problem; 2) local optimizations
involving different technicians can be run simultaneously in
parallel.

Since the number of possible pairs in a set of n ∈ N ele-
ments is given by n(n− 1)/2, i.e., it increases quadratically
with n, we decide to performe the above described gossip
technique over a subset of all these pairs by exploiting their
geographical distribution. We do so by means of the so-called
“Delaunay graph” [26], [27].

Definition 1: Consider a set of points scattered over a geo-
metric space and let G = (V,E) be a graph where V is the
set of nodes representing the points and E is a set of edges
connecting them. The graph G is the (unique) Delaunay
graph of points V if the edges in E form a triangulation
such that no point in V is inside the circumcircle of any
triangle formed by the edges of E.

The Delaunay graph provides a nice connectivity structure
among the input points because for any given node, its
incident edges are connected to the nodes that are closer
to it than any other nodes in the set. More importantly, the
maximum number of edges in a Delaunay graph is equal to
3n− 6 for n ≥ 3, i.e., it increases linearly with the number
of nodes, which scales much better than a complete graph
with a number of edges equal to n(n−1)/2, which increases
quadratically with the number of edges (see Fig. 2).

In Algorithm 1, the Delaunay graph is constructed based
on the technicians’ current tasks, thereby circumventing in-



Algorithm 1 Online Task Assignment and Scheduling with
Multi-Vehicle Routing

Input: The sets of technicians S, days D, and tasks P
The initial Delaunay graph GD=(S,ED)
The number m∈N of unassigned tasks to be
included in the local optimizations

Initialize: Mark all edges as active EA=ED

1: repeat indefinitely steps 2-24:
2: while EA=∅ do
3: if technician i⋆ is late or changes task
4: Mark incident edges of agent i⋆ as active:

EA=EA∪{(i, j)∈ED | i= i⋆ or j= i⋆}
5: end if
6: end while
7: Update the positions of technicians based on

the tasks they are currently executing (if any)
8: Keep the memory of previous edges: E−

D=ED

9: Construct the new Delaunay Graph: GD=(S,ED)
10: Mark old edges as inactive: EA=EA∩ED

11: Mark new edges as active: EA=EA∪(ED \E−
D)

12: Pick an edge (i⋆, j⋆) at random from EA

13: Solve the local optimization problem (3) where:
(i) only technicians i⋆ and j⋆ are considered
(ii) only tasks currently assigned to technicians
i⋆ or j⋆ are considered, along with m∈N
randomly picked unassigned tasks in P
(iii) the scheduling of the current and previous
tasks must remain unchanged

14: if the new solution improves the objective of (3)
15: if agent i⋆ changes assignment
16: Mark its incident edges as active:

EA=EA∪{(i, j)∈ED | i= i⋆ or j= i⋆}
17: end if
18: if agent j⋆ changes assignment
19: Mark its incident edges as active:

EA=EA∪{(i, j)∈ED | i=j⋆ or j=j⋆}
20: end if
21: return the new assignment, schedule, and rout-

ing for technicians i⋆ and j⋆

22: end if
23: Mark edge (i⋆, j⋆) as inactive EA=EA \{(i⋆, j⋆)}
24: Update the sets of the currently available tech-

nicians S and tasks P

trusive real-time geolocation and ensuring technician privacy.
Specifically, the initial geographic position of the technicians
correspond to their assigned depot, which is subsequently
updated to reflect the location of the task they are currently
executing. Consequently, during the real-time execution of
Algorithm 1, the Delaunay graph must be recomputed every
time one or more of the technicians change tasks or when
is late on schedule, thus allowing re-assignemnt of the tasks
to reduce profit losses. In order to deal with this dynamic
scenario, we mark the edges of the real-time Delaunay
graph as “active” or “inactive” to denote whether the local
optimization between the corresponding incident nodes has

been already performed or not. Algorithm 1 implements the
following logic:

• All edges of the Delaunay graph are initially active.
• If the local optimization associated with an edge (i, j)

improves the previous solution by changing the schedule
of one of the technicians, then all edges incident to
nodes i and/or j are marked as active. In any case,
edge (i, j) is marked as inactive at the end of the
optimization.

• If the Delaunay graph changes, then all remaining edges
keep their marking, while new edges are marked as
active.

• If an agent i is late on schedule or changes tasks, the
edges incident on node i are marked as active.

This logic ensures that there exists a finite number of steps
after which the execution of Algorithm 1 stops because all
edges will eventually be marked as inactive.

IV. NUMERICAL SIMULATION: A CASE STUDY BY
DEDEM S.P.A.

In this section, we discuss a numerical simulation of the
proposed Algorithm 1 using real data provided by DEDEM
S.p.A., an international company with a long history in the
passport photo sector, starting in 1962 with the installation
of the first photo booth machine in Rome, Italy. We have
collected anonymized data of 16 technicians’ tours in a
working week of 5 days for a total of about 1000 tasks to be
executed across 5 Italian regions (Lazio, Campania, Toscana,
Umbria, Abruzzo). We provide next a high-level description
of the real parameters collected by DEDEM S.p.A. that we
used to formalize our set-up as described in Section II:

• Technicians start working at 7 : 00 AM (T s
i = 7) and

finish working at 6 : 30 PM (T e
i = 18.5 for all i ∈ S);

• The cost of technicians for one day of work is C 50, 00
(qi = 50 for all i ∈ S);

• Tasks may be executed at any time (T s = 7 and
T e
i = 18.5 for all p ∈ P );

• The duration of the tasks ranges from 1 minute to 5
hours (dp ∈ [0.02, 5] for all p ∈ P ), while the average
duration is about 22 minutes;

• The profit of the tasks ranges from C 0.50 to C 11.40
per hour (gp ∈ [0.5, 11.4] for all p ∈ P ), while the
average profit is about C 1.80;

• The area containing all tasks is contained within a
squared area of side length of 250 km;

• Travel times have been computed by means of Google
Maps APIs, while the fuel cost has been considered
fixed for all roads and equal to about C 0.10 per
kilometer (fij = 0.10 for any i, j ∈ V ).

The actual routes taken by the technicians are illustrated
in Fig. 3, encompassing 814 tasks (approximately 88% of
the total available) completed over a span of 5 workdays.
The expected profit, computed as per Equation (2) over a
complete week (considering also the weekend), amounts to
C 281.695, 14. A closer inspection of Fig. 3 reveals that
the company currently assigns tasks to technicians based



Fig. 3: Real routes retrieved from DEDEM S.p.A.’s data.
Some tasks are not executed due to time window constraints.

on their geographic proximity. Specifically, in the case of
DEDEM S.p.A., the tasks under consideration involve the
refurbishment and repair of photo booth machines situated at
fixed geographical locations. Each technician is exclusively
responsible for tasks associated with machines assigned to
them, precluding them from working on other machines.

A. Heuristic offline solution

The complete optimization problem formulation, when
considering all 16 technicians and all 932 tasks, becomes
really hard to solve since it consists of about half billion
variables (half million are boolean). Instead, when imple-
menting Algorithm 1, the problem’s complexity decreases
significantly. This is due to the fact that only 2 technicians
and a subset of the total tasks are considered. Initially, at the
point where none of the tasks are assigned and only m = 10
unassigned tasks are taken into account, the optimization
problem consists of:

• ∼ 6 thousand variables (200 are boolean);
• ∼ 12 thousand constraints.

As Algorithm 1 progresses through subsequent iterations,
more tasks are incorporated into the problem. However, it
remains constrained to only 2 technicians and a fraction of
the total tasks. This is because tasks are gradually assigned to
technicians in a distributed manner during execution. Con-
sequently, the initial local optimizations are comparatively
simpler to solve optimally, while complexity increases as
more tasks are assigned to technicians. Indeed, at the end of
the process, on average, the local optimizations consist of:

• ∼ 1.5 million variables (13 thousand are boolean);
• ∼ 3 million constraints.

Nevertheless, the solver benefits from the previous solution,
which serves as a warm start, speeding up the algorithm.

We have implemented Algorithm 1 in Python program-
ming language, utilizing Gurobi 11.0 (with Academic Li-
cence) as the optimization solver. We simulate the execution
of Algorithm 1 during the weekend to compute a solution for

Fig. 4: Routes obtained by Algorithm 1. Improved routing
and assignments allow more tasks to be executed.

the next working week. We impose the following constraints
on each local optimization:

• an optimality gap of 10%;
• a time limit of 15 minutes;
• an horizon time of 5 days.

The algorithm ran for a total of about 36 hours, from
Saturday at 1 AM to Sunday at 1 PM. The routes of the
heuristic solution are illustrated in Fig. 4, encompassing 832
tasks (approximately 90% of the total available) completed
over a span of 5 workdays. The expected profit, computed as
per Equation (2) over a complete week (considering also the
weekend), amounts to C 326.318, 66. When compared with
the real routes, the solution found by the proposed heuristic
allows to perform 18 more tasks (> 2%) with an extra profit
of C 44.623, 52 (> 15%).

B. Heuristic online solution

We now consider the scenario in which an unexpected
event does not allow the normal execution of the tasks in the
schedule and show how the online execution of Algorithm
1 allows to mitigate the negative effects of the event, i.e.,
it allows to reduce the loss of profit for the company. The
unfortunate event taken into consideration is the sudden
unavailability of one technician on the first day, to which
were assigned 19 tasks, which would cause a profit loss of
C 11.094, 52 if no action is taken. We simulate the real-
time execution of Algorithm 1 during the first day of the
workweek, where the 19 tasks originally assigned to the
technician who is no longer available are now available
for assignment to other technicians, provided it results in
increased profit. The objective is that of trying to re-assign
these tasks to other technicians during the working day. We
impose the following constraints on each local optimization
performed by the solver:

• an optimality gap of 0%;
• a time limit of 2 minutes;
• an horizon time of 2 days.



With these parameters, the algorithm ran for approximately
2 hours – i.e., at least 60 local optimizations – assigning
17 out of 19 tasks. In other words, the algorithm ran at the
same time the technicians were executing their tasks and,
progressively, exchanged or added tasks to the technicians
by modifying their future schedule. After the first two hours,
it continued to optimize the routes for the remainder of the
day without assigning any additional tasks but still changing
them if convenient. At the end of the day, the profit loss is
C 1.055, 41, less than 10% of the maximum possible loss in
the case no action would have been taken. This saved loss
can be attributed to two main factors: 1) the reassignment of
tasks for an employee who became suddenly unavailable on
the first day; 2) the local optimization between new pairs of
technicians resulting from the time-varying Delaunay graph
constructed throughout the day, which is informed by their
latest task executions.

V. CONCLUSIONS

This paper presents a distributed heuristic algorithm de-
signed to address a problem encompassing task assignment,
route planning, and scheduling for a large workforce. The
algorithm accounts for unique complexities arising from a
real-world case study provided by DEDEM S.p.A., aimed
at maximizing profit. It operates in real-time during tasks
execution, automatically adjusting scheduling in response to
new tasks, technician unavailability, or delays. Numerical
simulations validate the effectiveness of the proposed ap-
proach, demonstrating improved expected profit compared to
the company’s current scheduling and highlighting its ability
to mitigate potential profit loss.

Future work will focus on characterizing the scalability of
the approach with respect to workforce size and task number,
and exploring the introduction of machine-learning in the
light of [28], [29].
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